In brief: neutron stars powered by the decay of ultra-strong magnetic fields.
Two distinct classes (Pre-1990s):
Problems:
The Unification (Duncan & Thompson, 1992):
Key Prediction:
Detection: All-sky monitors (Swift BAT, Fermi GBM) for bursts.
Timing Analysis:
Spectroscopy: Soft X-rays (\(0.5\text{ - }10\text{ keV}\)) and Hard X-rays (\(>10 \text{ keV}\)).
Hierarchy of Activity:
Glitches: Sudden spin-up events (common).
Anti-Glitches: Sudden spin-down (rare, unique to magnetars).
The "j-bundle" Model:
Two Spectral Components:
Graph: Spectrum showing the "upturn" at high energies (\(>10 \text{ keV}\)).
Structure of a Neutron Star: Core (Liquid) vs. Crust (Solid).
Dynamics:
The "Starquake":
Population: \(\sim30\) known sources (at time of this presentation).
Transient Magnetars: Some have "low" dipole fields (\(B<7.5\times10^{12}\text{ Gs}\)) but still burst.
Implies strong internal toroidal fields.
Radio Emission: rare, pulsed radio emission detected in only \(\sim4\) magnetars.
Bias: We only find magnetars when they burst. Many "quiet" ones likely exist.
[1] Duncan, R. C. and Thompson, C.: 1992, The Astrophysical Journal 392, L9
[2] Kaspi, V. M. and Beloborodov, A.: 2017, Annual Review of Astronomy and Astrophysics 55(1), 261
[3] Kouveliotou, C., Dieters, S., Strohmayer, T., van Paradijs, J., Kommers, J., Smith, I., Frail, D., and Murakami, T.: 1998
[4] Kramer, M., Liu, K., Desvignes, G., Karuppusamy, R., and Stappers, B. W.: 2023, Nature Astronomy 8(2), 230
[5] Mazets, E. P. and Golenetskii, S. V.: 1981, Astrophysics and Space Science 75(1), 47
[6] Younes, G., Baring, M. G., et al.: 2023, Nature Astronomy 7(3), 339